Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}$ $+1$ or $9 m+8$.
Question.
Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}$ $+1$ or $9 m+8$.
Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}$ $+1$ or $9 m+8$.
Solution:
Any positive integer is of the form
$3 q, 3 q+1,3 q+2$
Case1: Let, $\mathrm{n}=3 \mathrm{q}$
Cube of this will be
$n^{3}=27 q^{3}$
$n^{3}=9\left(3 q^{3}\right)$
So, $\mathrm{n}^{3}=9 \mathrm{~m}$, where $\mathrm{m}=3 \mathrm{q}^{3}$
Case2: $\mathrm{n}=3 \mathrm{q}+1$
So, $n^{3}=(3 q+1)^{3}$
$\mathrm{n}^{3}=27 \mathrm{q}^{3}+1+27 \mathrm{q}^{2}+9 \mathrm{q}$
$=9\left(3 q^{3}+3 q^{2}+q\right)+1$
$\mathrm{n}^{3}=9 \mathrm{~m}+1$, where $\mathrm{m}=3 \mathrm{q}^{3}+3 \mathrm{q}^{2}+\mathrm{q}$
Case3: $\mathrm{n}=3 \mathrm{q}+2$
So, $n^{3}=(3 q+2)^{3}$
$=27 q^{3}+54 q^{2}+36 q+8$
$=9\left(3 q^{3}+6 q^{2}+4 q\right)+8$
$n^{3}=9 m+8$, where $m=3 q^{3}+6 q^{2}+4 q$
So, it means cube of positive integer is of the form $9 m, 9 m+1$ and $9 m+8$.
Any positive integer is of the form
$3 q, 3 q+1,3 q+2$
Case1: Let, $\mathrm{n}=3 \mathrm{q}$
Cube of this will be
$n^{3}=27 q^{3}$
$n^{3}=9\left(3 q^{3}\right)$
So, $\mathrm{n}^{3}=9 \mathrm{~m}$, where $\mathrm{m}=3 \mathrm{q}^{3}$
Case2: $\mathrm{n}=3 \mathrm{q}+1$
So, $n^{3}=(3 q+1)^{3}$
$\mathrm{n}^{3}=27 \mathrm{q}^{3}+1+27 \mathrm{q}^{2}+9 \mathrm{q}$
$=9\left(3 q^{3}+3 q^{2}+q\right)+1$
$\mathrm{n}^{3}=9 \mathrm{~m}+1$, where $\mathrm{m}=3 \mathrm{q}^{3}+3 \mathrm{q}^{2}+\mathrm{q}$
Case3: $\mathrm{n}=3 \mathrm{q}+2$
So, $n^{3}=(3 q+2)^{3}$
$=27 q^{3}+54 q^{2}+36 q+8$
$=9\left(3 q^{3}+6 q^{2}+4 q\right)+8$
$n^{3}=9 m+8$, where $m=3 q^{3}+6 q^{2}+4 q$
So, it means cube of positive integer is of the form $9 m, 9 m+1$ and $9 m+8$.