Use Euclid's algorithm to find HCF of 1190 and 1445. Express the HCF in the form 1190m + 1445n.
Using Euclid's division algorithm, we have
Since 1445 > 1190, we apply Euclid's division lemma to 1445 and 1190 to get;
$1445=1190 \times 1+255$
Since the remainder is not zero, we again apply division lemma to 1190 and 255 and get;
$1190=255 \times 4+170$
Again, the remainder is not zero, so we apply division lemma to 255 and 170 to get;
$255=170 \times 1+85$
Now we finally apply division lemma to 170 and 85 to get;
$170=85 \times 2+0$
Since, in this step, 85 completely divides 170 leaving zero remainder, we stop the procedure.
Hence, the HCF is 85.
Now, using the above division, we have
$170 \times 1+85=255$
$\Rightarrow 85=255-170 \times 1$
$\Rightarrow 85=(1445-1190 \times 1)-(1190-255 \times 4)$
$\Rightarrow 85=(1445-1190)-[1190-(1445-1190) \times 4]$
$\Rightarrow 85=(1445-1190)-[1190-1445 \times 4+1190 \times 4]$
$\Rightarrow 85=1445-1190-[1190 \times 5-1445 \times 4]$
$\Rightarrow 85=1445-1190-1190 \times 5+1445 \times 4$
$\Rightarrow 85=1445 \times 5-1190 \times 6$
Or, $85=1190(-6)+1445(5)$
Hence, $m=-6, n=5$