Question:
Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is
(a) 1 unit,
(b) 5 unit and
(c) 7 unit.
Solution:
$|a|=3$ and $|b|=4$
Let $\theta$ be the angle between them.
Then, using the relation $R^{2}=A^{2}+B^{2}+2 A B \cos \theta$
(a)
We get for $R=1$,
$1=9+16+24 \operatorname{Cos} \theta$
Or, $\theta=180^{\circ}$
(b)
For, $\mathrm{R}=5$, we have
$25=9+16+24 \operatorname{Cos} \theta$
Or, $\cos \theta=0$;
$\theta=90^{\circ}$
(c) For $\mathrm{R}=7$,
$49=9+16+24 \operatorname{Cos} \theta$,
Or $\cos \theta=1$,
And $\theta=0^{\circ}$