Two travelling waves produces a standing wave represented by equation,

Question:

Two travelling waves produces a standing wave represented by equation,

$\mathrm{y}=1.0 \mathrm{~mm} \cos \left(1.57 \mathrm{~cm}^{-1}\right) \mathrm{x} \sin \left(78.5 \mathrm{~s}^{-1}\right) \mathrm{t}$

The node closest to the origin in the region $x>0$

will be at $x=$ $\mathrm{cm}$.

 

Solution:

For node

$\cos \left(1.57 \mathrm{~cm}^{-1}\right) \mathrm{x}=0$

$\left(1.57 \mathrm{~cm}^{-1}\right) \mathrm{x}=\frac{\pi}{2}$

$x=\frac{\pi}{2(1.57)} \mathrm{cm}=1 \mathrm{~cm}$

Ans. $1.00$

Leave a comment