Two taps running together can fill a tank in $3 \frac{1}{13}$ hours. If one tap takes 3 hours more than the other to fill the tank then how much time will each tap take to fill the tank?
Let one tap fills the tank in $x$ hours.
Therefore, the other tap will fill the tank in $(x+3)$ hours.
Time taken by both taps, running together, to fill the tank $=3 \frac{1}{13}$ hours $=\frac{40}{13}$ hours
Part filled by one tap in 1 hour $=\frac{1}{x}$
Part filled by the other tap in 1 hour $=\frac{1}{x+3}$
Part filled by both taps, running together, in 1 hour $=\frac{1}{x}+\frac{1}{x+3}$
$\therefore \frac{1}{x}+\frac{1}{x+3}=\frac{1}{40 / 13}$
$\Rightarrow \frac{(x+3)+x}{x(x+3)}=\frac{13}{40}$
$\Rightarrow \frac{2 x+3}{x^{2}+3 x}=\frac{13}{40}$
$\Rightarrow 13 x^{2}+39 x=80 x+120$
$\Rightarrow 13 x^{2}-41 x-120=0$
$\Rightarrow 13 x^{2}-(65-24) x-120=0$
$\Rightarrow 13 x^{2}-65 x+24 x-120=0$
$\Rightarrow 13 x(x-5)+24(x-5)=0$
$\Rightarrow(x-5)(13 x+24)=0$
$\Rightarrow x-5=0$ or $13 x+24=0$
$\Rightarrow x=5$ or $x=\frac{-24}{13}$
$\Rightarrow x=5 \quad(\because$ time cannot be a negative fraction $)$
Thus, one pipe will take 5 hour and the other will take $\{(5+3)=8\}$ hour s to fill the tank.