Two small drops of mercury each of radius R coalesce

Question:

Two small drops of mercury each of radius $R$ coalesce to form a single large drop. The ratio of total surface energy before and after the change is :

  1. $2^{\frac{1}{3}}: 1$

  2. $1: 2^{\frac{1}{3}}$

  3. $2: 1$

  4. $1: 2$


Correct Option: 1

Solution:

$\frac{4}{3} \pi \mathrm{R}^{3}+\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \mathrm{R}^{13}$

$R^{\prime}=2^{\frac{1}{3}} R$ ............(i)

$\mathrm{A}_{\mathrm{i}}=2\left[4 \pi \mathrm{R}^{2}\right]$

$\mathrm{A}_{\mathrm{f}}=4 \pi \mathrm{R}^{\prime 2}$

$\frac{U_{i}}{U_{f}}=\frac{A_{i}}{A_{f}}=\frac{2 R^{2}}{2^{2 / 3} R^{2}}=2^{1 / 3}$

Leave a comment