Two sides of a triangle have lengths 'a' and 'b' and the angle between them is
As, the area of the triangle, $A=\frac{1}{2} a b \sin \theta$
$\Rightarrow A(\theta)=\frac{1}{2} a b \sin \theta$
$\Rightarrow A^{\prime}(\theta)=\frac{1}{2} a b \cos \theta$
For maxima or minima, $A^{\prime}(\theta)=0$
$\Rightarrow \frac{1}{2} a b \cos \theta=0$
$\Rightarrow \cos \theta=0$
$\Rightarrow \theta=\frac{\pi}{2}$
Also, $A^{\prime \prime}(\theta)=-\frac{1}{2} a b \sin \theta$
or, $A^{\prime \prime}\left(\frac{\pi}{2}\right)=-\frac{1}{2} a b \sin \frac{\pi}{2}=-\frac{1}{2} a b<0$
i. e. $\theta=\frac{\pi}{2}$ is point of maxima
Now,
The maximum area of the triangle $=\frac{1}{2} a b \sin \frac{\pi}{2}=\frac{a b}{2}$