Two parallel lines l and m are intersected by a transversal t. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
Given: l || m and the bisectors of interior angles intersect at B and D.
To prove: ABCD is a rectangle.
Proof:
Since, l || m (Given)
So, $\angle P A C=\angle A C R$ (Alternate interior angles)
$\Rightarrow \frac{1}{2} \angle P A C=\frac{1}{2} \angle A C R$
$\Rightarrow \angle B A C=\angle A C D$
but, these are a pair of alternate interior angles for AB and DC.
$\Rightarrow A B \| D C$
Similarly, $B C \| A D$
So, ABCD is a parallelogram.
Also,
$\angle P A C+\angle C A S=180^{\circ} \quad$ (Linear pair)
$\Rightarrow \frac{1}{2} \angle P A C+\frac{1}{2} \angle C A S=90^{\circ}$
$\Rightarrow \angle B A C+\angle C A D=90^{\circ}$
$\Rightarrow \angle B A D=90^{\circ}$
But, this an angle of the parallleogram ABCD.
Hence, ABCD is a rectangle.