Question:
Two number differ by 4 and their product is 192. Find the numbers.
Solution:
Let two required numbers be $x$ and $(x+4)$
Then according to question
$x(x+4)=192$
$x^{2}+4 x-192=0$
$x^{2}+16 x-12 x-192=0$
$x(x+16)-12(x+16)=0$
$(x+16)(x-12)=0$
$(x+16)=0$
$x=-16$
Or
$(x-12)=0$
$x=12$
Since, x being a number,
Therefore,
When $x=-16$ then
$x+4=-16+4$
$=-12$
And when $x=12$ then
$x+4=12+4$
$=16$
Thus, two consecutive number be either 12,16 or $-16,-12$