Question:
Two natural numbers differ by 3 and their product is 504. Find the numbers.
Solution:
Let the required numbers be $x$ and $(x+3)$.
According to the question:
$x(x+3)=504$
$\Rightarrow x^{2}+3 x=504$
$\Rightarrow x^{2}+3 x-504=0$
$\Rightarrow x^{2}+(24-21) x-504=0$
$\Rightarrow x^{2}+24 x-21 x-504=0$
$\Rightarrow x(x+24)-21(x+24)=0$
$\Rightarrow(x+24)(x-21)=0$
$\Rightarrow x+24=0$ or $x-21=0$
$\Rightarrow x=-24$ or $x=21$
If $x=-24$, the numbers are $-24$ and $\{(-24+3)=-21\}$.
If $x=21$, the numbers are 21 and $\{(21+3)=24\}$.
Hence, the numbers are $(-24,-21)$ and $(21,24)$.