Question:
Two lines AB and CD intersect at O. If ∠AOC = 50°, find ∠AOD, ∠BOD and ∠BOC.
Solution:
We know that if two lines intersect then the vertically-opposite angles are equal.
Therefore, $\angle A O C=\angle B O D=50^{\circ}$
Let $\angle A O D=\angle B O C=x^{\circ}$
Also, we know that the sum of all angles around a point is
Therefore,
$\angle A O C+\angle A O D+\angle B O D+\angle B O C=360^{\circ}$
$\Rightarrow 50+x+50+x=360^{\circ}$
$\Rightarrow 2 x=260^{\circ}$
$\Rightarrow x=130^{\circ}$
Hence, $\angle A O D=\angle B O C=130^{\circ}$
Therefore, $\angle A O D=130^{\circ}, \angle B O D=50^{\circ}$ and $\angle B O C=130^{\circ}$.