Two events A and B will be independent, if
(A) $A$ and $B$ are mutually exclusive
(B) $\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)=[1-\mathrm{P}(\mathrm{A})][1-\mathrm{P}(\mathrm{B})]$
(C) $P(A)=P(B)$
(D) $P(A)+P(B)=1$
Two events A and B are said to be independent, if P(AB) = P(A) × P(B)
Consider the result given in alternative B.
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$\Rightarrow P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A)-P(B)+P(A) \cdot P(B)$
$\Rightarrow 1-P(A \cup B)=1-P(A)-P(B)+P(A) \cdot P(B)$
$\Rightarrow P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)$
$\Rightarrow P(A)+P(B)-P(A B)=P(A)+P(B)-P(A) \cdot P(B)$
$\Rightarrow P(A B)=P(A) \cdot P(B)$
This implies that $A$ and $B$ are independent, if $P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
Distracter Rationale
A. Let $\mathrm{P}(\mathrm{A})=m, \mathrm{P}(\mathrm{B})=n, 0
A and B are mutually exclusive.
$\therefore \mathrm{A} \cap \mathrm{B}=\phi$
$\Rightarrow \mathrm{P}(\mathrm{AB})=0$
However, $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=m n \neq 0$
$\therefore \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(B) \neq \mathrm{P}(\mathrm{AB})$
C. Let A: Event of getting an odd number on throw of a die = {1, 3, 5}
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
B: Event of getting an even number on throw of a die = {2, 4, 6}
$P(B)=\frac{3}{6}=\frac{1}{2}$
Here, $\mathrm{A} \cap \mathrm{B}=\phi$
$\therefore \mathrm{P}(\mathrm{AB})=0$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{4} \neq 0$
$\Rightarrow P(A) \cdot P(B) \neq P(A B)$
D. From the above example, it can be seen that,
$P(A)+P(B)=\frac{1}{2}+\frac{1}{2}=1$
However, it cannot be inferred that A and B are independent.
Thus, the correct answer is B.