Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD.
Given Two equal chords $A B$ and $C D$ of a circle intersecting at a point $P$.
To prove $P B=P D$
Construction Join $O P$, draw $O L \perp A B$ and $O M \perp C D$
Proof We have, $A B=C D$
$\Rightarrow \quad O L=O M$
[equal chords are equidistant from the centre]
In $\triangle O L P$ and $\triangle O M P$, $O L=O M$ [proved above]
$\angle O L P=\angle O M P$ [each 90^{\circ] }
$\begin{array}{lll}\text { and } & O P=O P & \text { [common side] }\end{array}$
$\therefore \quad \Delta O L P \equiv \Delta O M P \quad$ [by RHS congruence rule]
$\Rightarrow$ $L P=M P$ $[$ by CPCT $] \ldots(i)$
Now, $A B=C D$
$\Rightarrow$ $\frac{1}{2}(A B)=\frac{1}{2}(C D)$ [dividing both sides by 2]
$\Rightarrow$ $B L=D M$ ....(ii)
[perpendicular drawn from centre to the circle bisects the chord $i . e ., A L=\angle B$ and $C M=M D$ ]
On subtracting Eq. (ii) from Eq. (i), we get
$L P-B L=M P-D M \Rightarrow P B=P D$
Hence proved.