Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
In fig. the two concentric circles have their centre at O. The radius of the larger circle is 5 cm and that of the smaller circle is 3 cm.
AB is a chord of the larger circle and it touches the smaller circle at P.
Join $\mathrm{OA}, \mathrm{OB}$ and $\mathrm{OP}$.
$\mathrm{OP}=3 \mathrm{~cm}$
and $\mathrm{OP} \perp \mathrm{AB}$,
i.e., $\angle \mathrm{OPA}=$
$\angle \mathrm{OPB}=90^{\circ}$
$\Rightarrow \quad \Delta \mathrm{OAP} \cong \Delta \mathrm{OBP} \quad(\mathrm{RHS}$ congruence $)$
$\Rightarrow \quad \mathrm{AP}=\mathrm{BP}=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{AB}$ or $\mathrm{AB}=2 \mathrm{AP}$
By Pythagoras theorem,
$\mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
$\Rightarrow \quad(5)^{2}=A P^{2}+(3)^{2}$
$\mathrm{AP}^{2}=25-9=16$
$\Rightarrow \quad \mathrm{AP}=4 \mathrm{~cm}$
$\Rightarrow \quad \mathrm{AB}=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}$
Now, $\mathrm{OA}=\mathrm{OB}=5 \mathrm{~cm}$