Two coherent light sources having intensity in the ratio 2 x produce an interference

Question:

Two coherent light sources having intensity in the ratio $2 \times$ produce an interference

pattern. The ratio $\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}$ will be :

  1. $\frac{2 \sqrt{2 x}}{x+1}$

  2. $\frac{\sqrt{2 x}}{2 x+1}$

  3. $\frac{2 \sqrt{2 x}}{2 x+1}$

  4. $\frac{\sqrt{2 x}}{x+1}$


Correct Option: , 3

Solution:

(3)

Let $I_{1}=2 x$

$I_{2}=1$

$I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$

$I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$

$\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{(\sqrt{2 x}+1)^{2}-(\sqrt{2 x}-1)^{2}}{(\sqrt{2 x}+1)^{2}+(\sqrt{2 x}-1)^{2}}$

$=\frac{4 \sqrt{2 x}}{2+4 x}=\frac{2 \sqrt{2 x}}{1+2 x}$

Leave a comment