Two circles of radii 10 cm and 8 cm intersect each other, and the length of the common chord is 12 cm.
Two circles of radii 10 cm and 8 cm intersect each other, and the length of the common chord is 12 cm. Find the distance between their centres.
Given: OA = 10 cm, O'A = 8 cm and AB = 12 cm
$A D=\left(\frac{\mathrm{AB}}{2}\right)=\left(\frac{12}{2}\right)=6 \mathrm{~cm}$
Now, in right angled ΔADO, we have:
$O A^{2}=A D^{2}+O D^{2}$
$\Rightarrow O D^{2}=O A^{2}-A D^{2}$
$=10^{2}-6^{2}$
= 100 - 36 = 64
∴ OD = 8 cm
Similarly, in right angled ΔADO', we have:
$O^{\prime} A^{2}=A D^{2}+O^{\prime} D^{2}$
$\Rightarrow O^{\prime} D^{2}=O^{\prime} A^{2}-A D^{2}$
$=8^{2}-6^{2}$
$=64-36$
$=28$
$\Rightarrow O^{\prime} D=\sqrt{28}=2 \sqrt{7} \mathrm{~cm}$
Thus, $O O^{\prime}=\left(O D+O^{\prime} D\right)$
$=(8+2 \sqrt{7}) \mathrm{cm}$
Hence, the distance between their centres is $(8+2 \sqrt{7}) \mathrm{cm}$.