Two chords AB and CD of a circle intersect at a point outside the circle. Prove that
(a) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(b) PA. PB = PC. PD
Given: AB and CD are two chords
To Prove:
(a) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(b) PA. PB $=$ PC. PD
Proof:
$\angle \mathrm{ABD}+\angle \mathrm{ACD}=180^{\circ}$ ........(1)
(Opposite angles of a cyclic quadrilateral are supplementary)
$\angle \mathrm{PCA}+\angle \mathrm{ACD}=180^{\circ}$ ...........(2)
(Linear Pair Angles)
Using (1) and (2), we get
$\angle \mathrm{ABD}=\angle \mathrm{PCA}$
$\angle \mathrm{A}=\angle \mathrm{A} \quad$ (Common)
By AA similarity-criterion $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
When two triangles are similar, then the ratios of the lengths of their corresponding sides are proportional.
$\therefore \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{PB}}$
$\Rightarrow$ PA. PB $=$ PC.PD