Question:
Two angles of a triangle are in the ratio 4 : 5. If the sum of these angles is equal to the third angle, find the angles of the triangle.
Solution:
Let the common multiple of all the three angles be $\mathrm{x}$.
Then, the first angle will be $4 \mathrm{x} .$
And the second angle will be $5 \mathrm{x}$.
In a triangle, sum of all the three angles will be equal to $180^{\circ}$.
$\therefore T$ hird angle $=180-(4 x+5 x)=180-9 x$
$\therefore 4 x+5 x=180-9 x$
$\Rightarrow 9 x=180-9 x$
$\Rightarrow 9 x+9 x=180$
$\Rightarrow 18 x=180$
$\Rightarrow x=\frac{180}{18}=10$
First angle $=4 x=4 \times 10=40^{\circ}$
Second angle $=5 x=5 \times 10=50^{\circ}$
Third angle $=4 x+5 x=9 x=9 \times 10=90^{\circ}$