Question:
Two adjacent angles of a parallelogram are in the ratio 4 : 5. Find the measure of each of its angles.
Solution:
Let $A B C D$ be the parallelogram.
Then, $\angle A$ and $\angle B$ are its adjacent angles.
Let $\angle A=(4 x)^{\circ}$
$\angle B=(5 x)^{\circ}$
$\therefore \angle A+\angle B=180^{\circ} \quad\left[s\right.$ ince sum of the adjacent angles of a parallelogram is $\left.180^{\circ}\right]$
$\Rightarrow 9 x=180$
$\Rightarrow x=\frac{180}{9}$
$\Rightarrow x=20$
$\therefore \angle A=(4 \times 20)^{\circ}=80^{\circ}$
$\angle B=(5 \times 20)^{\circ}=100^{\circ}$
$O$ pposite angles of parallelogram are equal.
$\therefore \angle C=\angle A=80^{\circ}$
$\angle D=\angle B=100^{\circ}$