Twelve solid spheres of the same size are made by melting a solid metallic

Question:

Twelve solid spheres of the same size are made by melting a solid metallic cylinder of base diameter 2 cm and height 16 cm. The diameter of each sphere is
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 6 cm

Solution:

(a) 2 cm
Let the diameter of each sphere be cm.
Let r and be the radii of the sphere and the cylinder, respectively,
and h be the height of the cylinder.

As $R=\frac{\text { Diameter }}{2}$,

$R=\frac{2}{2} \mathrm{~cm}=1 \mathrm{~cm}$

$h=16 \mathrm{~cm}$

Therefore,

$12 \times \frac{4}{3} \pi r^{3}=\pi R^{2} h$

$\Rightarrow 12 \times \frac{4}{3} r^{3}=R^{2} h$

$\Rightarrow 12 \times \frac{4}{3}\left(\frac{d}{2}\right)^{3}=(1)^{2} \times 16$

$\Rightarrow 16 \times \frac{d^{3}}{8}=16$

$\Rightarrow d^{3}=8$

$\Rightarrow d=\pm 2$

Since $d$ cannot be negative, thus, $d=2$

Hence, the diameter of each sphere is 2 cm.

Leave a comment