Twelve solid spheres of the same size are made by melting a solid metallic cylinder of base diameter 2 cm and height 16 cm. The diameter of each sphere is
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 6 cm
(a) 2 cm
Let the diameter of each sphere be d cm.
Let r and R be the radii of the sphere and the cylinder, respectively,
and h be the height of the cylinder.
As $R=\frac{\text { Diameter }}{2}$,
$R=\frac{2}{2} \mathrm{~cm}=1 \mathrm{~cm}$
$h=16 \mathrm{~cm}$
Therefore,
$12 \times \frac{4}{3} \pi r^{3}=\pi R^{2} h$
$\Rightarrow 12 \times \frac{4}{3} r^{3}=R^{2} h$
$\Rightarrow 12 \times \frac{4}{3}\left(\frac{d}{2}\right)^{3}=(1)^{2} \times 16$
$\Rightarrow 16 \times \frac{d^{3}}{8}=16$
$\Rightarrow d^{3}=8$
$\Rightarrow d=\pm 2$
Since $d$ cannot be negative, thus, $d=2$
Hence, the diameter of each sphere is 2 cm.