Tick the correct answer in the following :
Area of a sector of angle p (in degree) of a circle with radius R is,
(A) $\frac{\mathbf{P}}{\mathbf{1 8 0}} \times \mathbf{2} \pi \mathbf{R}$
(B) $\frac{\mathbf{p}}{\mathbf{1 8 0}} \times \pi \mathbf{R}^{\mathbf{2}}$
(C) $\frac{\mathbf{p}}{\mathbf{3 6 0}} \times \mathbf{2 \pi R}$
(D) $\frac{\mathbf{P}}{\mathbf{7 2 0}} \times \mathbf{2 \pi R}^{\mathbf{2}}$
(D) Here, radius (r) = R
Angle of sector $(\theta)=p^{\circ}$
$\therefore \quad$ Area of the sector
$=\frac{\theta}{\mathbf{3 C D}} \times \pi \mathbf{r}^{\mathbf{2}}=\frac{\mathbf{P}}{\mathbf{3 C D}^{\circ}} \times \pi \mathbf{R}^{\mathbf{2}}$
$=\frac{2}{2} \times\left(\frac{\mathbf{p}}{\mathbf{3 B 0}^{\circ}} \times \pi \mathbf{r}^{\mathbf{2}}\right)=\frac{\mathbf{p}}{\mathbf{7 2 0}^{\circ}} \times \mathbf{2} \pi \mathbf{R}^{\mathbf{2}}$