Question:
Tick (✓) the correct answer:
If an angle of a parallelogram is two-thirds of its adjacent angle, the smallest angle of the parallelogram is
(a) 54°
(b) 72°
(c) 81°
(d) 108°
Solution:
(b) $72^{\circ}$
Let $x^{\circ}$ be the angle of the parallelogram.
Sum of the adjacent angles of a parallelogram is $180^{\circ}$.
$\therefore x+\left(\frac{2}{3} \times x\right)=180$
$\Rightarrow x+\frac{2 x}{3}=180$
$\Rightarrow\left(x+\frac{2 x}{3}\right)=180$
$\Rightarrow \frac{5 x}{3}=180$
$\Rightarrow x=\left(180 \times \frac{3}{5}\right)$
$\Rightarrow x=108$
Hence, one angle of the parallelogram is $108^{\circ}$.
Its adjacent angle $=(180-108)^{\circ}=72^{\circ}$
Therefore, the smallest angle of the parallelogram is $72^{\circ}$.