Tick (✓) the correct answer

Question:

If $\left(x-\frac{1}{x}\right)=4$, find the value of

(i) $\left(x^{2}+\frac{1}{x^{2}}\right)$.

(ii) $\left(x^{4}+\frac{1}{x^{4}}\right)$.

Solution:

(i) 

Given, $\left(x-\frac{1}{x}\right)=4$

Squaring both the sides:

$\left(x-\frac{1}{x}\right)^{2}=4^{2}$

$\Rightarrow(x)^{2}-2 \times(x) \times\left(\frac{1}{x}\right)+\left(\frac{1}{x}\right)^{2}=16$

$\Rightarrow x^{2}-2+\frac{1}{x^{2}}=16$

$\Rightarrow x^{2}+\frac{1}{x^{2}}=16+2$

$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)=18$

(ii) From the first part:

$\left(x^{2}+\frac{1}{x^{2}}\right)=18$

Squaring both the sides :

$\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=18^{2}$

$\Rightarrow\left(x^{2}\right)^{2}+2 \times\left(x^{2}\right) \times\left(\frac{1}{x^{2}}\right)+\left(\frac{1}{x^{2}}\right)^{2}=324$

$\Rightarrow x^{4}+2+\frac{1}{x^{4}}=324$

$\Rightarrow x^{4}+\frac{1}{x^{4}}=324-2$

$\therefore x^{4}+\frac{1}{x^{4}}=322$

Leave a comment