Tick (✓) the correct answer:

Question:

Tick (✓) the correct answer:

$\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)=?$

(a) $\left(\frac{1}{x^{2}}-\frac{1}{y^{2}}\right)$

(b) $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)$

(c) $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}-\frac{1}{x y}\right)$

(d) $\left(\frac{1}{x^{2}}-\frac{1}{y^{2}}+\frac{1}{x y}\right)$

Solution:

(a) $\left(\frac{1}{x^{2}}-\frac{1}{y^{2}}\right)$

$\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)$

$\Rightarrow$ According to the formula $(a+b)(a-b)=(a)^{2}-(b)^{2}:$

$\Rightarrow\left(\frac{1}{x^{2}}-\frac{1}{y^{2}}\right)$

Leave a comment