Question:
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Solution:
Let the three numbers be $a-d, a, a+d$.
Their sum $=27$
$\Rightarrow a-d+a+a+d=27$
$\Rightarrow 3 a=27$
$\Rightarrow a=9 \quad \ldots(i)$
Product $=(a-d) a(a+d)=648$
$\Rightarrow a\left(a^{2}-d^{2}\right)=648$
$\Rightarrow 9\left(81-d^{2}\right)=648$
$\Rightarrow\left(81-d^{2}\right)=72$
$\Rightarrow d^{2}=9$
$\Rightarrow d=\pm 3$
When $\mathrm{a}=9, \mathrm{~d}=3$, we have :
$6,9,12$
When a $=9, d=-3$, we have :
$12,9,6$