Three cuboids of dimensions 5 cm × 6 cm × 7cm, 4cm × 7cm × 8 cm and 2 cm × 3 cm × 13 cm are melted and a cube is made. Find the side of cube.
The dimensions of the three cuboids are $5 \mathrm{~cm} \times 6 \mathrm{~cm} \times 7 \mathrm{~cm}, 4 \mathrm{~cm} \times 7 \mathrm{~cm} \times 8 \mathrm{~cm}$ and $2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 13 \mathrm{~cm}$.
Now, a new cube is formed by melting the given cuboids.
$\therefore$ Voulume of the cube $=$ sum of the volumes of the cuboids
$=(5 \mathrm{~cm} \times 6 \mathrm{~cm} \times 7 \mathrm{~cm})+(4 \mathrm{~cm} \times 7 \mathrm{~cm} \times 8 \mathrm{~cm})+(2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 13 \mathrm{~cm})$
$=\left(210 \mathrm{~cm}^{3}\right)+\left(224 \mathrm{~cm}^{3}\right)+\left(78 \mathrm{~cm}^{3}\right)$
$=512 \mathrm{~cm}^{3}$
Since volume of a cube $=(\text { side })^{3}$, we have:
$512=(\text { side })^{3}$
$\Rightarrow($ side $)=\sqrt[3]{512}=8 \mathrm{~cm}$
$\therefore$ The side of the new cube is $8 \mathrm{~cm}$.