Three circles are placed on a plane in such a way that each circle just touches the other two, each having a radius of 10 cm. Find the area of region enclosed by them.
Let there be 3 circles with centre A, B and C respectively such that each circle touches the other two. They all have radius of 10 cm.
We have to find the area enclosed between the circles.
We have,
$\mathrm{AB}=10 \mathrm{~cm}$
$\mathrm{BC}=10 \mathrm{~cm}$
$\mathrm{CA}=10 \mathrm{~cm}$
$A B=10+10 \mathrm{~cm}=20 \mathrm{~cm}$
$B C=10+10 \mathrm{~cm}=20 \mathrm{~cm}$
$C A=10+10 \mathrm{~cm}=20 \mathrm{~cm}$
Hence $\triangle \mathrm{ABC}$ is an equilateral triangle.
So, $\angle \mathrm{ABC}=60^{\circ}, \angle \mathrm{BCA}=60^{\circ} \angle \mathrm{CAB}=60^{\circ}$
So, the area enclosed between the circles,
Required area $=\operatorname{ar}(\triangle \mathrm{ABC})-3($ Area of the sector formed $)$
So,
Required area $=\frac{\sqrt{3}}{4}(\mathrm{AB})^{2}-3\left(\frac{1}{2}(r)^{2} \frac{\theta}{180} \pi\right)$
Put the values to get,
Required area $=\frac{\sqrt{3}}{4}(20)^{2}-3\left(\frac{1}{2}(10)^{2} \frac{60}{180}\left(\frac{22}{7}\right)\right)$
$=173.2-3(52.38)$
$=(173.2-157.14) \mathrm{cm}^{2}$
$=16.05 \mathrm{~cm}^{2}$