then y-x is equal to.

Question:

If $x=\sin ^{-1}(\sin 10)$ and $y=\cos ^{-1}(\cos 10)$, then $y-x$ is equal to.

  1. (1) 0

  2. (2) 10

  3. (3) $7 \pi$

  4. (4) $\pi$


Correct Option: , 4

Solution:

$x=\sin ^{-1}(\sin 10)$

$\Rightarrow \quad x=3 \pi-10$            $\left\{\begin{array}{l}3 \pi-\frac{\pi}{2}<10<3 \pi+\frac{\pi}{2} \\ \Rightarrow 3 \pi-x=10\end{array}\right.$

and $y=\cos ^{-1}(\cos 10)$               $\left\{\begin{array}{l}3 \pi<10<4 \pi \\ \Rightarrow 4 \pi-x=10\end{array}\right.$

$\Rightarrow \quad y=4 \pi-10$

$\therefore \quad y-x=(4 \pi-10)-(3 \pi-10)=\pi$

Leave a comment