then find the value of

Question:

If $a=1, b=2$ then find the value of $\left(a^{b}+b^{a}\right)^{-1}$.

 

Solution:

For = 1and b = 2,

$\left(a^{b}+b^{a}\right)^{-1}$

$=\left(1^{2}+2^{1}\right)^{-1}$

$=(1+2)^{-1}$

$=3^{-1}$

$=\frac{1}{3} \quad\left(x^{-a}=\frac{1}{x^{a}}\right)$

Thus, the value of $\left(a^{b}+b^{a}\right)^{-1}$ when $a=1$ and $b=2$ is $\frac{1}{3}$.

 

Leave a comment