Question:
The volume of a sphere is increasing at 3 cubic centimeter per second. Find the rate of increase of the radius, when the radius is 2 cms.
Solution:
Let r be the radius and V be the volume of the sphere at any time t. Then,
$V=\frac{4}{3} \pi r^{3}$
$\Rightarrow \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$
$\Rightarrow \frac{d r}{d t}=\frac{1}{4 \pi r^{2}} \frac{d V}{d t}$
$\Rightarrow \frac{d r}{d t}=\frac{3}{4 \pi(2)^{2}} \quad\left[\because r=2 \mathrm{~cm}\right.$ and $\left.\frac{d V}{d t}=3 \mathrm{~cm}^{3} / \mathrm{sec}\right]$
$\Rightarrow \frac{d r}{d t}=\frac{3}{16 \pi} \mathrm{cm} / \mathrm{sec}$