The vector equation of the plane passing through
the intersection of the planes $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=1$ and
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}})=-2$, and the point $(1,0,2)$ is :
Correct Option: , 3
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=1$
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}})=-2$
point $(1,0,2)$
$\mathrm{Eq}^{\mathrm{n}}$ of plane
$\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})-1+\lambda\{\mathrm{r} \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}})+2\}=0$
$\overrightarrow{\mathrm{r}} \cdot\{\hat{\mathrm{i}}(1+\lambda)+\hat{\mathrm{j}}(1-2 \lambda)+\hat{\mathrm{k}}(1)\}-1+2 \lambda=0$
Point $\hat{\mathrm{i}}+0 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}=\overrightarrow{\mathrm{r}}$
$\therefore(\hat{\mathrm{i}}+2 \hat{\mathrm{k}})\{\hat{\mathrm{i}}(1+\lambda)+\hat{\mathrm{j}}(1-2 \lambda)+\hat{\mathrm{k}}(1)\}-1+2 \lambda=0$
$1+\lambda+2-1+2 \lambda=0$
$\lambda=-\frac{2}{3}$
$\therefore \quad \overrightarrow{\mathrm{r}} \cdot\left[\hat{\mathrm{i}}\left(\frac{1}{3}\right)+\hat{\mathrm{j}}\left(\frac{7}{3}\right)+\hat{\mathrm{k}}\right]=\frac{7}{3}$
$\mathrm{r} \cdot[\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}]=7$
Ans. 3