The values of lambda and

Question:

The values of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26$, $x+2 y+\lambda z=\mu$ has no solution, are :

  1. $\lambda=3, \mu=5$

  2. $\lambda=3, \mu \neq 10$

  3. $\lambda \neq 2, \mu=10$

  4. $\lambda=2, \mu \neq 10$


Correct Option: , 4

Solution:

$x+y+z=6$ .........(i)

$3 x+5 y+5 z=26$ .........(ii)

$x+2 y+\lambda z=\mu$ .........(ii)

$5 \times(\mathrm{i})-(\mathrm{ii}) \Rightarrow 2 \mathrm{x}=4 \Rightarrow \mathrm{x}=2$

$\therefore$ from (i) and (iii)

$y+z=4$ ............(iv)

$2 y+\lambda z=\mu-2$ .............(v)

$(\mathrm{v})-2 \times(\mathrm{iv})$

$\Rightarrow(\lambda-2) z=\mu-10$

$\Rightarrow \mathrm{z}=\frac{\mu-10}{\lambda-2} \& \mathrm{y}=4-\frac{\mu-10}{\lambda-2}$

$\therefore$ For no solution $\lambda=2$ and $\mu \neq 10$

Leave a comment