Question:
The values of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26$, $x+2 y+\lambda z=\mu$ has no solution, are :
Correct Option: , 4
Solution:
$x+y+z=6$ .........(i)
$3 x+5 y+5 z=26$ .........(ii)
$x+2 y+\lambda z=\mu$ .........(ii)
$5 \times(\mathrm{i})-(\mathrm{ii}) \Rightarrow 2 \mathrm{x}=4 \Rightarrow \mathrm{x}=2$
$\therefore$ from (i) and (iii)
$y+z=4$ ............(iv)
$2 y+\lambda z=\mu-2$ .............(v)
$(\mathrm{v})-2 \times(\mathrm{iv})$
$\Rightarrow(\lambda-2) z=\mu-10$
$\Rightarrow \mathrm{z}=\frac{\mu-10}{\lambda-2} \& \mathrm{y}=4-\frac{\mu-10}{\lambda-2}$
$\therefore$ For no solution $\lambda=2$ and $\mu \neq 10$