The value of the determinant $\left|\begin{array}{lll}\sin A & \cos A & \sin A+\cos B \\ \sin B & \cos A & \sin B+\cos B \\ \sin C & \cos A & \sin C+\cos B\end{array}\right|$ is__________
Let $\Delta=\left|\begin{array}{ccc}\sin A & \cos A & \sin A+\cos B \\ \sin B & \cos A & \sin B+\cos B \\ \sin C & \cos A & \sin C+\cos B\end{array}\right|$
$\Delta=\left|\begin{array}{lll}\sin A & \cos A & \sin A+\cos B \\ \sin B & \cos A & \sin B+\cos B \\ \sin C & \cos A & \sin C+\cos B\end{array}\right|$
$=\left|\begin{array}{lll}\sin A & \cos A & \sin A \\ \sin B & \cos A & \sin B \\ \sin C & \cos A & \sin C\end{array}\right|+\left|\begin{array}{ccc}\sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B\end{array}\right|$
$=0+\left|\begin{array}{lll}\sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B\end{array}\right|$ ( $\because$ if any two columns are identical then the value of determinant is zero)
$=\left|\begin{array}{lll}\sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B\end{array}\right|$
Taking out $\cos A$ and $\cos B$ common from $C_{2}$ and $C_{3}$, respectively
$=\cos A \cos B\left|\begin{array}{lll}\sin A & 1 & 1 \\ \sin B & 1 & 1 \\ \sin C & 1 & 1\end{array}\right|$
$=\cos A \cos B(0)$ ( $\because$ if any two columns are identical then the value of determinant is zero)
$=0$
Hence, the value of the determinant $\left|\begin{array}{lll}\sin A & \cos A & \sin A+\cos B \\ \sin B & \cos A & \sin B+\cos B \\ \sin C & \cos A & \sin C+\cos B\end{array}\right|$ is $\underline{0}$.