Question:
The value of [(sec A + tan A) (1−sin A)] is equal to
(a) tan2 A
(b) sin2 A
(c) cos A
(d) sin A
Solution:
Here we have to evaluate the value of $(\sec A+\tan A)(1-\sin A)$
Now we are going to solve this
$(\sec A+\tan A)(1-\sin A)$
$=\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)$ (here we are using the trigonometrical relation)
$=\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)$
$=\frac{1}{\cos A}(1+\sin A)(1-\sin A)$
$=\frac{1}{\cos A}\left(1-\sin ^{2} A\right)$ we know that $(a-b)(a+b)=\left(a^{2}-b^{2}\right)$
$=\frac{\cos ^{2} A}{\cos A}$ we use the relation $\sin ^{2} A+\cos ^{2} A=1$
$=\cos A$
Hence the option (c) is correct.