The value of r for which

Question:

The value of r for which

${ }^{20} \mathrm{C}_{\mathrm{r}}{ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{\mathrm{r}-1}{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{\mathrm{r}-2}{ }^{20} \mathrm{C}_{2}+\ldots{ }^{20} \mathrm{C}_{0}{ }^{20} \mathrm{C}_{\mathrm{r}}$ is maximum, is

  1. 20

  2. 15

  3. 11

  4. 10


Correct Option: 1

Solution:

Given sum = coefficient of xr in the expansion

of $(1+x)^{20}(1+x)^{20}$,

which is equal to ${ }^{40} \mathrm{C}_{\mathrm{r}}$

It is maximum when $r=20$

Leave a comment