Question:
The value of k for which the system, of equations has infinite number of solutions, is
$2 x+3 y=5$
$4 x+k y=10$
(a) 1
(b) 3
(c) 6
(d) 0
Solution:
The given system of equations are
$2 x+3 y=5$
$4 x+k y=10$
For the equations to have infinite number of solutions, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here, $a_{1}=2, a_{2}=4, b_{1}=3, b_{2}=k$
Therefore $\frac{2}{4}=\frac{3}{k}=\frac{5}{10}$
By cross multiplication of $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$ we get,
$\frac{2}{4}=\frac{3}{k}$
$2 k=12$
$k=\frac{12}{2}$
$k=6$
And
$\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{3}{k}=\frac{5}{10}$
$30=5 k$
$\frac{30}{5}=k$
$6=k$
Therefore the value of k is 6
Hence, the correct choice is $c$