Question:
The value of k for which the system of equations has a unique solution, is
$k x-y=2$
$6 x-2 y=3$
(a) $=3$
(b) $\neq 3$
(c) $\neq 0$
(d) $=0$
Solution:
The given system of equations are
$k x-y=2$
$6 x-2 y=3$
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ for unique solution
Here $a_{1}=k, a_{2}=6, b_{1}=-1, b_{2}=-2$
By cross multiply we get
$2 k \neq 6$
$k \neq \frac{6}{2}$
$k \neq 3$
Hence, the correct choice is $b$.