The value of cos

Question:

The value of $\cos ^{4} x+\sin ^{4} x-6 \cos ^{2} x \sin ^{2} x$ is

(a) cos 2x

(b) sin 2x

(c) cos 4x

(d) none of these

Solution:

(c) cos 4x

$\cos ^{4} x+\sin ^{4} x-6 \cos ^{2} x \sin ^{2} x=\cos ^{4} x+\sin ^{4} x-2 \cos ^{2} x \sin ^{2} x-4 \cos ^{2} x \sin ^{2} x$

$=\left(\cos ^{2} x-\sin ^{2} x\right)^{2}-(2 \sin x \cos x)^{2}$

$=\cos ^{2} 2 x-\sin ^{2} 2 x$

$=\cos 4 x$

Leave a comment