The value of $\cos \frac{\pi}{12}-\sin \frac{\pi}{12}$ is __________________
$\cos \frac{\pi}{12}-\sin \frac{\pi}{12}$
multiply and divide above equation by $\sqrt{2}$
i. e. $\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos \frac{\pi}{12}-\frac{1}{\sqrt{2}} \sin \frac{\pi}{12}\right]$
$=\sqrt{2}\left[\frac{\cos \pi}{4} \frac{\cos \pi}{12}-\frac{\sin \pi}{4} \frac{\sin \pi}{12}\right]$
$=\sqrt{2}\left[\cos \left(\frac{\pi}{4}+\frac{\pi}{12}\right)\right]$ [using identify $\cos (a+b)=\cos a \cos b-\sin a \sin b$ ]
$=\sqrt{2}\left[\cos \left(\frac{3 \pi+\pi}{12}\right)\right]$
$=\sqrt{2}\left[\cos \left(\frac{4 \pi}{12}\right)\right]=\sqrt{2} \cos \frac{\pi}{3}$
$=\sqrt{2} \times \frac{1}{2}=\frac{1}{\sqrt{2}}$
Hence, value of $\cos \frac{\pi}{12}-\sin \frac{\pi}{12}$ is $\frac{1}{\sqrt{2}}$.