The value of $\cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$ is
(a) $\frac{1}{8}$
(b) $\frac{1}{16}$
(c) $\frac{1}{32}$
(d) none of these
(d) none of these
We have,
$\cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
$=\frac{2 \sin \frac{\pi}{65}}{2 \sin \frac{\pi}{65}} \cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
(dividing and multiplying by $2 \sin \frac{\pi}{65}$ )
$=\frac{2 \sin \frac{2 \pi}{65}}{2 \times 2 \sin \frac{\pi}{65}} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
$=\frac{2 \sin \frac{4 \pi}{65}}{2 \times 4 \sin \frac{\pi}{65}} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
$=\frac{2 \sin \frac{8 \pi}{65}}{2 \times 8 \sin \frac{\pi}{65}} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
$=\frac{2 \sin \frac{16 \pi}{65}}{2 \times 16 \sin \frac{\pi}{65}} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$
$=\frac{2 \sin \frac{32 \pi}{65}}{2 \times 32 \sin \frac{\pi}{65}} \cos \frac{32 \pi}{65}$
$=\frac{\sin \frac{64 \pi}{65}}{64 \sin \frac{\pi}{65}}$
$=\frac{\sin \left(\pi-\frac{\pi}{65}\right)}{64 \sin \frac{\pi}{65}}$
$=\frac{\sin \frac{\pi}{65}}{64 \sin \frac{\pi}{65}}$
$=\frac{1}{64}$