The value of $c$ in Rolle's theorem for the function $f(x)=\frac{x(x+1)}{o^{x}}$ defined on $[-1,0]$ is
(a) $0.5$
(b) $\frac{1+\sqrt{5}}{2}$
(c) $\frac{1-\sqrt{5}}{2}$
(d) $-0.5$
(C) $\frac{1-\sqrt{5}}{2}$
Given:
$f(x)=\frac{x(x+1)}{e^{x}}$
Differentiating the given function with respect to x, we get
$f^{\prime}(x)=\frac{e^{x}(2 x+1)-x(x+1) e^{x}}{\left(e^{x}\right)^{2}}$
$\Rightarrow f^{\prime}(x)=\frac{(2 x+1)-x(x+1)}{e^{x}}$
$\Rightarrow f^{\prime}(x)=\frac{2 x+1-x^{2}-x}{e^{x}}$
$\Rightarrow f^{\prime}(x)=\frac{-x^{2}+x+1}{e^{x}}$
$\Rightarrow f^{\prime}(c)=\frac{-c^{2}+c+1}{e^{c}}$
$\therefore f^{\prime}(c)=0$
$\Rightarrow \frac{-c^{2}+c+1}{e^{c}}=0$
$\Rightarrow c^{2}-c-1=0$
$\Rightarrow c=\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}$
$\therefore c=\frac{1-\sqrt{5}}{2} \in(-1,0)$
Hence, the required value of $c$ is $\frac{1-\sqrt{5}}{2}$.