The value of

Question:

Solution:

$\frac{1^{3}+2^{3}+3^{3}+\ldots+10^{3}}{1+2+\ldots+10}$

Since $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

$\Rightarrow 1^{3}+2^{3}+\ldots+10^{3}=\left[\frac{10(10+1)}{2}\right]^{2}$

$=\left[\frac{10 \times 11}{2}\right]^{2}$

$=(55)^{2}$

also $1+2+\ldots+n=\frac{n(n+1)}{2}$

$\Rightarrow 1+2+\ldots+10=\frac{10(11)}{2}=\frac{5 \times 11}{2}=55$

$\Rightarrow \frac{1^{3}+2^{3}+\ldots+10^{3}}{1+2+. .+n}=\frac{(55)^{2}}{55}=55$

Leave a comment