Question:
The value of $\mathrm{Kc}$ is 64 at $800 \mathrm{~K}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. The value of $K_{\mathrm{c}}$ for the following reaction is :
Correct Option:
Solution:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; K_{c}$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \quad \frac{1}{K_{c}}$
For
$\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) ; \quad \frac{1}{K_{c}^{1 / 2}}$
$\frac{1}{K_{c}^{1 / 2}}=\frac{1}{(64)^{1 / 2}}=\frac{1}{8}$