The value of

Question:

The value of $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$, where $[t]$ denotes the greatest integer $\leq t$, is :

  1. $\frac{\mathrm{e}-1}{3 \mathrm{e}}$

  2. $\frac{\mathrm{e}+1}{3}$

  3. $\frac{\mathrm{e}+1}{3 \mathrm{e}}$

  4. $\frac{1}{3 \mathrm{e}}$


Correct Option: , 3

Solution:

$I=\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$

$=\int_{-1}^{0} x^{2} e^{\left[x^{3}\right]} d x+\int_{0}^{1} x^{2} e^{\left[x^{3}\right]} d x$

$=\int_{-1}^{0} x^{2} e^{-1} d x+\int_{0}^{1} x^{2} e^{0} d x$

$=\frac{1}{e} \times\left.\frac{x^{3}}{3}\right|_{-1} ^{0}+\left.\frac{x^{3}}{3}\right|_{0} ^{1}$

$=\frac{1}{\mathrm{e}} \times\left(0-\left(\frac{-1}{3}\right)\right)+\frac{1}{3}$

$=\frac{1}{3 \mathrm{e}}+\frac{1}{3}=\frac{1+\mathrm{e}}{3 \mathrm{e}}$

Leave a comment