Question:
The value of $x^{p-q} \cdot x^{q-r} \cdot x^{r-p}$ is equal to
(a) 0
(b) 1
(C) $X$
(d) $x^{09 r}$
Solution:
$x^{p-q} \cdot x^{q-r} \cdot x^{r-p}=x^{p-q+q-r+r-p}$
$=x^{0}$
$=1$
$\therefore$ The value of $x^{p-q} \cdot x^{q-r} \cdot x^{r-p}$ is equal to 1 .
Hence, the correct option is (b).