The value of

Question:

The value of $x^{p-q} \cdot x^{q-r} \cdot x^{r-p}$ is equal to

(a) 0

(b) 1

(C) $X$

(d) $x^{09 r}$

 

Solution:

$x^{p-q} \cdot x^{q-r} \cdot x^{r-p}=x^{p-q+q-r+r-p}$

$=x^{0}$

$=1$

$\therefore$ The value of $x^{p-q} \cdot x^{q-r} \cdot x^{r-p}$ is equal to 1 .

Hence, the correct option is (b).

Leave a comment