The value of

Question:

The value of $\sqrt[4]{\sqrt[3]{2^{2}}}$ is

(a) $2^{\frac{-1}{6}}$

(b) $2^{-6}$

(c) $2^{\frac{1}{6}}$

(d) $2^{6}$

 

Solution:

$\sqrt[4]{\sqrt[3]{2^{2}}}=\left[\left(2^{2}\right)^{\frac{1}{3}}\right]^{\frac{1}{4}}$

$=\left[2^{\frac{2}{3}}\right]^{\frac{1}{4}}$

$=2^{\frac{2}{12}}$

$=2^{\frac{1}{6}}$

$\therefore$ The value of $\sqrt[4]{\sqrt[3]{2^{2}}}$ is $2^{\frac{1}{6}}$.

Hence, the correct option is (c).

 

Leave a comment