The value of

Question:

The value of $\int_{0}^{2 \pi} \frac{x \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x} d x$ is equal to:

  1. (1) $2 \pi$

  2. (2) $2 \pi^{2}$

  3. (3) $\pi^{2}$

  4. (4) $4 \pi$


Correct Option: , 3

Solution:

$\int_{0}^{2 \pi} \frac{x \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x} d x$

$=\int_{0}^{\pi}\left[\frac{x \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x}+\frac{(2 \pi-x) \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x}\right] d x$

$\left[\because \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x\right]$

$=\int_{0}^{\pi} \frac{2 \pi \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x} d x$

$=2 \pi \int_{0}^{\pi / 2}\left[\frac{\sin ^{8} x}{\sin ^{8} x+\cos ^{8} x}+\frac{\cos ^{8} x}{\sin ^{8} x+\cos ^{8} x}\right] d x$

$=2 \pi \int_{0}^{\pi / 2} 1 d x=2 \pi \times \frac{\pi}{2}=\pi^{2}$

Leave a comment