The value of $\frac{\sin 5 \alpha-\sin 3 \alpha}{\cos 5 \alpha+2 \cos 4 \alpha+\cos 3 \alpha}=$
(a) $\cot \alpha / 2$
(b) $\cot \alpha$
(c) $\tan \alpha / 2$
(d) None of these
(c) $\tan \alpha / 2$
$\frac{\sin 5 \alpha-\sin 3 \alpha}{\cos 5 \alpha+2 \cos 4 \alpha+\cos 3 \alpha}=\frac{\sin 5 \alpha-\sin 3 \alpha}{\cos 5 \alpha+\cos 3 \alpha+2 \cos 4 \alpha}$
$=\frac{2 \sin \alpha \cos 4 \alpha}{2 \cos 4 \alpha \cos \alpha+2 \cos 4 \alpha}$
$=\frac{2 \sin \alpha \cos 4 \alpha}{2 \cos 4 \alpha(\cos \alpha+1)}$
$=\frac{\sin \alpha}{\cos \alpha+1}$
$=\frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}}$
$=\frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{2 \cos ^{2} \frac{\alpha}{2}}$
$=\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}$
$=\tan \frac{\alpha}{2}$