The value of $\sum_{\mathrm{r}=0}^{6}\left({ }^{6} \mathrm{C}_{\mathrm{r}} \cdot{ }^{6} \mathrm{C}_{6-\mathrm{r}}\right)$ is equal to :
Correct Option: , 4
$\sum_{r=0}^{6}{ }^{6} \mathrm{C}_{r} \cdot{ }^{6} \mathrm{C}_{6-r}$
$={ }^{6} \mathrm{C}_{0} \cdot{ }^{6} \mathrm{C}_{6}+{ }^{6} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{5}+\ldots \ldots+{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{0}$
Now,
$(1+x)^{6}(1+x)^{6}$
$=\left({ }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1} \mathrm{x}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{2}+\ldots \ldots+{ }^{6} \mathrm{C}_{6} \mathrm{x}^{6}\right)$
$\left({ }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1} \mathrm{x}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{2}+\ldots \ldots+{ }^{6} \mathrm{C}_{6} \mathrm{x}^{6}\right)$
Comparing coefficeint of $x^{6}$ both sides
${ }^{6} \mathrm{C}_{0} \cdot{ }^{6} \mathrm{C}_{6}+{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{5}+\ldots \ldots . .+{ }^{6} \mathrm{C}_{6} \cdot{ }^{6} \mathrm{C}_{0}={ }^{12} \mathrm{C}_{6}$
$=924$