The value of

Question:

If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c$ is equal to________.

Solution:

$\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$

$\Rightarrow \lim _{x \rightarrow 0} \frac{a\left(1+x+\frac{x^{2}}{2 !} \ldots\right)-b\left(1-\frac{x^{2}}{2 !}+\ldots\right)+c\left(1-x+\frac{x^{2}}{2 !}\right)}{\left(\frac{x \sin x}{x}\right) x}=2$

$a-b+c=0$ ..............(1)

$a-c=0$............(2)

$\& \frac{a+b+c}{2}=2$

$\Rightarrow \quad a+b+c=4$

Leave a comment